首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261579篇
  免费   24156篇
  国内免费   11753篇
电工技术   16362篇
技术理论   32篇
综合类   25352篇
化学工业   36994篇
金属工艺   14173篇
机械仪表   13256篇
建筑科学   33180篇
矿业工程   15197篇
能源动力   10598篇
轻工业   17817篇
水利工程   11613篇
石油天然气   13221篇
武器工业   3397篇
无线电   15706篇
一般工业技术   20335篇
冶金工业   17262篇
原子能技术   2000篇
自动化技术   30993篇
  2024年   580篇
  2023年   3495篇
  2022年   6206篇
  2021年   8658篇
  2020年   8363篇
  2019年   6511篇
  2018年   6107篇
  2017年   7547篇
  2016年   9294篇
  2015年   9837篇
  2014年   17778篇
  2013年   15944篇
  2012年   19080篇
  2011年   21034篇
  2010年   15501篇
  2009年   15570篇
  2008年   14204篇
  2007年   17414篇
  2006年   15733篇
  2005年   13628篇
  2004年   11400篇
  2003年   9904篇
  2002年   8165篇
  2001年   6760篇
  2000年   5788篇
  1999年   4588篇
  1998年   3355篇
  1997年   2880篇
  1996年   2393篇
  1995年   1988篇
  1994年   1698篇
  1993年   1209篇
  1992年   1018篇
  1991年   706篇
  1990年   610篇
  1989年   545篇
  1988年   338篇
  1987年   248篇
  1986年   206篇
  1985年   254篇
  1984年   186篇
  1983年   147篇
  1982年   96篇
  1981年   105篇
  1980年   102篇
  1979年   50篇
  1978年   30篇
  1977年   28篇
  1959年   26篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
1.
目的 了解公众对网络食品药品谣言信息及虚假宣传甄别能力和行为态度,探索防范谣言传播、维护社会稳定的有效措施和途径。方法 采用随机抽样研究方法,对贵州省某少数民族自治州公众开展食品药品网络谣言及虚假宣传辨识能力、行为态度问卷调查。结果 当地公众食品药品网络谣言及虚假宣传辨识能力总体较低,经济发展落后地区的青少年人群对网络谣言及虚假宣传的辨识能力较弱。大部分公众处理网络食品药品安全信息较为理性,更愿意通过国家监管部门权威网站了解信息,基本具备了确认信息真实性的主观意识,但辟除谣言的行动能力不高。结论 地方党委政府及有关部门应加强食品药品网络谣言和虚假宣传治理,加大当地谣言及虚假宣传的监测和系统性分析研究,有针对性、预判性地进行治理和科普宣传。  相似文献   
2.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
3.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
4.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
5.
学习不仅仅是自然科学知识的学习,更是社会科学、民族文化、正确人生观和价值观的形成过程,“课程思政”无疑正是实现该目标的捷径,它是当前高等院校思想政治教育的新模式。如何提升学生解决“复杂工程问题”的能力成为高校开展工程教育和“新工科”的难点和重点,而课程思政正是培养学生解决“复杂工程问题”中所需要的非技术因素的重要途径。“自动控制系统工程设计”是自动化专业高年级学生的一门专业课,当前关于“课程思政”的论述是指导思想居多、实施经验以及案例设计较少,针对该问题以“自动控制系统工程设计”为例,详细给出了“课程思政”教学案例的具体实施过程,对同类课程提供参考。  相似文献   
6.
寒区河道凌汛灾害河势“弯道效应”的量化评估十分重要。基于分形理论提出河道横断面-纵剖面-平面多维度河势分形维数计算方法及其物理机制,并探讨黄河内蒙古段不同维度河势演变分形特征及其与凌汛灾害的关联关系。结果表明,黄河内蒙古段不同维度河势均具有多尺度自相似分形特征,且具有多年记忆周期的长程相关性;冰坝(严重性冰塞)发生频次与河道主槽弯曲分形维数呈正相关指数型函数关系,与河相系数、深泓点高程和河段平均底坡分形维数负相关,与水深-面积分形维数正相关,总体表明冰坝灾害更易发生于主槽偏移摆动大、蜿蜒曲折、河湾发育程度高的宽浅型弯曲河道,研究成果可为凌汛期冰塞冰坝灾害易发河段诊断及预测提供重要理论依据。  相似文献   
7.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
8.
In this paper, a new carbon support with a large number of mesoporous-structures is selected to prepare Pt/C catalysts. Transmission electron microscope (TEM) results show that the Pt/3# catalyst presents a sponge-like morphology, Pt particles are not only evenly distributed on the surface of carbon support, but also the smaller Pt particles are deposited in the mesoporous inside the support. The average diameter of Pt particles is only 2.8 nm. The membrane electrode assembly (MEA) based on Pt/3# catalyst also shows excellent performance. In conclusion, the 3# support is an idea carbon support for PEMFC, which helps to improve the oxygen reduction reaction (ORR) activity of the catalyst. Based on the “internal-Pt” structure of the support mesoporous, the efficient three-phase boundaries (TPBs) are construct to avoid the poisoning effect of ionomer on the nano-metal particles, reduce the activation impedance and oxygen mass transfer impedance, and improve the reaction efficiency.  相似文献   
9.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
10.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号